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Abstract. This paper proposes a novel learning-based
approach to synthesizing cursive handwriting of a user’s
personal handwriting style by combining shape and
physical models. In the training process, some sample
paragraphs written by a user are collected and these cur-
sive handwriting samples are segmented into individual
characters by using a two-level writer-independent seg-
mentation algorithm. Samples for each letter are then
aligned and trained using shape models. In the synthe-
sis process, a delta log-normal model based conditional
sampling algorithm is proposed to produce smooth and
natural cursive handwriting of the user’s style from mod-
els.

Keywords: Handwriting synthesis – Cursive script –
Handwriting segmentation – Delta log-normal model –
Conditional sampling

1 Introduction

Pen-based interfaces are now a hotspot in human-
computer interface (HCI) research because in many situ-
ations, a pen together with a notepad is more convenient
than a keyboard or a mouse. The flourish of pen-based
devices brings a great demand for various handwriting
computing techniques. Hierarchically speaking, these de-
mands can be categorized into two levels. The first level
is handwriting recognition; techniques in this level make
it possible for computers to understand the information
involved in handwriting. The second level is handwrit-
ing modulation, for instance, handwriting editing, error
correction, script searching, etc. These applications have
gained much attention recently due to their increasing
importance on newly developed pen-based devices such
as PDAs and Tablet PCs. Suppose that when writing a
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note on a Tablet PC the computer could automatically
correct some written errors and generate some prede-
fined handwriting sentences of the user’s writing style;
this would make the writing process more effective. Fur-
thermore, handwriting is preferable to typed text in some
cases because it adds a personal touch to the communi-
cation. Most of these applications bring an urgent re-
quirement for handwriting synthesis techniques.

The problem of handwriting modeling and synthe-
sis has been addressed for a long time, and there
are many related studies in the literature. Gener-
ally speaking, these approaches can be divided into
two categories according to their principles: movement-
simulation techniques and shape-simulation methods.
Movement-simulation approaches are based on motor
models [1] and try to model the process of handwriting
production. In [2] and [3], modulation models were used
to model and represent the velocity of handwriting tra-
jectory. A delta log-normal model [4] was exploited in
[5] for handwritten script compression. However, these
studies were mainly focused on the representation and
analysis of real handwriting signals rather than hand-
writing synthesis. Extensive studies on motor models can
give some insight but cannot directly provide a solution
to the synthesis of a novel handwriting style, especially
with respect to cursive writing.

Shape-simulation techniques only consider the static
shape of handwriting trajectory. They are more practical
than movement-simulation techniques when the dynamic
information of handwriting samples is not available and
the trajectory has been resampled by other processors,
such as recognizers, as addressed in [6]. A straightfor-
ward approach is proposed in [7], where handwriting
is synthesized from collected handwritten glyphs. Each
glyph is a handwriting sample of two or three letters.
When synthesizing a long word, this approach simply
juxtaposes several glyphs in sequence and does not con-
nect them to generate fluent handwriting. In [8], the
problem of learning personal handwriting style is ad-
dressed and a learning-based cursive handwriting syn-
thesis approach is proposed. Handwriting trajectories
are modeled by landmark-based splines, and the problem
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of learning personal handwriting style is transformed to
statistically analyze the distribution of landmark points.
However, this approach cannot scale up to larger num-
bers of allographs since splines are not optimal for mod-
eling the abundant straight lines and points of high cur-
vature in mixed-style handwriting. Another issue of this
approach is that it tries to learn a separate model for the
connection of each pair of letters, and this is impractical
since the size of the training set is always limited.

To obtain more satisfying handwriting synthesis re-
sults, we first propose two constraints that a successful
handwriting synthesis algorithm should meet:

1. The shapes of letters in the synthesized cursive hand-
writing should be close to the shapes of those in the
training samples. In this way the personal handwrit-
ing style can be preserved.

2. The connection between synthesized letters should be
smooth and natural to produce fluent cursive script.

To achieve these objectives, we combine the ad-
vantages of the shape-simulation and the movement-
simulation methods to propose a novel cursive hand-
writing synthesis technique. Handwriting samples are
collected and segmented into individual characters us-
ing a two-level writer-independent segmentation algo-
rithm. Like widely used statistical shape models [9,10],
handwriting strokes of the same character are automat-
ically matched and aligned first, and the shape varia-
tion of the training set is then learned by PCA mod-
els. To produce fluent handwriting, we exploit the delta
log-normal model and propose a conditional sampling
method, which has the ability to selectively generate
novel letters from models and connect them smoothly.

The remainder of this paper is organized as follows.
Section 2 presents our methods for training data prepa-
ration and segmentation. Section 3 describes the hand-
writing stroke alignment and training algorithms. Sec-
tion 4 presents the conditional sampling technique in
the synthesis strategies. Some experimental results are
shown in Sect. 5, and discussions and conclusions are
presented in Sect. 6.

2 Sample collection and segmentation

2.1 Sample collection

For an initial user, he/she is required to write some sam-
ple paragraphs for the training purpose, on a newly de-
veloped Tablet PC which incorporates an integral dis-
play. There are about 200 words in these paragraphs
and each letter has appeared more than five times. In
the preprocessing step, these handwriting samples firstly
pass through a low pass filter and then be re-sampled to
produce equi-distant points. Since we will train a sepa-
rate model for each character, handwritten letters will be
extracted from these cursive scripts, using the proposed
cursive handwriting segmentation technique.

2.2 Sample segmentation

2.2.1 Overview. In general, there are three categories of
methods for handwriting segmentation [11]. One is the
segmentation-based recognition method, which uses local
hints, such as the points of maximum curvature, to over-
segment the handwriting trajectories. Then a recognition
engine analyzes these segments and estimates which seg-
ments should be grouped to output a character. Another
approach, called recognition-based segmentation, is de-
vised in an inverse manner in which segmentation points
are given by the recognizer after recognition. These two
methods rely heavily on the performance of the recog-
nition engine. The third method is level-building [12],
which simultaneously outputs the recognition and seg-
mentation results.

In our case, although the paragraphs written by the
user are known, the recognition problem still exists, since
the user may write several strokes for a word and the
content of each stroke is unknown. To avoid propagating
recognition errors to segmentation, we adopt the frame-
work of level-building for handwriting segmentation, in
which segmentation and recognition are merged to give
an optimal result.

As agreed by most researchers, it is impossible to
achieve a correct ratio of 100% for handwriting recog-
nition and segmentation. Given the fact that there is
always a severe problem of erroneous labels being at-
tached to handwriting trajectories, some interactive sce-
narios have also been employed in the system. When the
user is writing samples, the segmentation points will be
automatically computed and displayed on the handwrit-
ing trajectories of finished words and the user enabled
for manual adjustment. Given the promising segmenta-
tion result of the proposed algorithm, the chances that
manual adjustment will be required are dramatically di-
minished.

2.2.2 A two-level framework. First we give a formal
description of the framework of traditional handwrit-
ing segmentation approaches. Let S = {z1, . . . , zT } be
a temporal handwriting sequence, where zt is a low-
level feature that denotes the coordinate and velocity
of the sequence at time t. The segmentation problem is
to find an identity string {I1, . . . , In}, with the corre-
sponding segments of the sequence {S1, . . . , Sn}, S1 =
{z1, . . . , zt1}, . . . , Sn = {ztn−1+1, . . . , zT }, that best ex-
plain the sequence

{I∗
1 , . . . , I∗

n}
= arg max p(S1, . . . , Sn|I1, . . . , In)p(I1, . . . , In)

= arg max p(I1)p(S1|I1)
n∏

i=2

p(Si|Ii)p(Ii|Ii−1) , (1)

where it is assumed that each segment Si is conditionally
independent of other variables given the corresponding
identity Ii. Usually HMMs or neural networks are trained
to obtain the likelihood p(Si|Ii). We also implemented
HMM-based segmentation algorithm under this frame-
work for testing and comparing.
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Fig. 1. Script codes of some handwrit-
ing characters

For the training of the writer-independent segmen-
tation system, a large handwriting database has been
built, which includes about 100,000 words written by
more than 100 people. In the experiments, the low-level
feature-based segmentation algorithm works well for a
small number of writers. However, as more and more
writing styles are added, it degrades rapidly in captur-
ing the variance of distinctly different writing styles. For
effective handling of the dramatic variance between dif-
ferent writing styles, a script code is calculated from
handwriting data as the middle-level feature for subclass
clustering. Five kinds of key points on the handwriting
sequence are extracted: points of maximum/minimum x-
coordinate, points of maximum/minimum y-coordinate
and crossing points, denoted as X+, X−, Y +, Y − and⊗

respectively. The average direction of the interval se-
quence between two adjacent key points is calculated and
quantized to eight directions, denoted as →↗↑←↙↓↘.
Any character can be uniquely coded by means of this
notation, as shown in Fig. 1. Based on the distance be-
tween script codes, samples of each character are divided
into several clusters, and those in the same cluster have
a similar structural topology.

Since the length of script code might not be the same
in all cases, it is implausible to directly compute the
distance. In this study the script code is modeled as a
homogeneous Markov chain. Given two script codes T1
and T2, we may compute the stationary distributions π1,
π2 and transition matrix A1, A2. The similarity between
two script codes is measured as

d(T1, T2) = exp
{
−λ1

2
[KL(π1, π2) + KL(π2, π1)]−

−λ2

2
[KL(A1, A2) + KL(A2, A1)]

− λ3(n1 − n2)2
}

(2)

where KL(π1, π2) =
∑n

l=1 π1(l) log π1(l)
π2(l)

is the Kullback–
Leibler (KL) divergence between two distributions. The
positions of π1, π2, A1, and A2 are enforced symmetri-
cally in Eq. 2. λ1, λ2, and λ3 balance the variance of the
KL divergence and the difference in code length. If both
the stationary distribution and the transition matrix of
two script codes are matched well, and their code lengths
are almost the same, the similarity measure d(T1, T2) is
close to 1.

Ii

Si

Ii+1

Si+1

Ii

Si

Ti
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Ti+1

(a) (b)

Fig. 2. a Graph model of one-level segmentation framework.
b Graph model of proposed two-level Bayesian framework

After introducing the script code as middle-level fea-
tures, the optimization problem becomes
{I∗

1 , . . . , I∗
n}

= arg max p(S1, . . . , Sn|I1, . . . , In)p(I1, . . . , In)
= arg max p(S, T |I1, . . . , In)p(I1, . . . , In)
= arg max p(I1)p(T1|I1)p(S1|T1, I1)

n∏
i=2

p(Ii|Ii−1)p(Ti|Ii, Ti−1, Ii−1)p(Si|Ti, Ii) . (3)

The graph model of the two-level framework and the
traditional one-level framework are compared in Fig. 2.
In a pruning level-building architecture, introducing the
script code T not only improves the accuracy of segmen-
tation but also dramatically reduces the computational
complexity of level-building.

2.2.3 Results. Both the one-level and the two-level al-
gorithms are tested on separate test sets. Segmentation
points given by these algorithms are checked by a human
being to determine whether they are true or false. The
results are listed in Table 1. For comparison, the result of
a standard recognition engine is also listed. It is obvious
that the two-level algorithm greatly improves the recog-
nition and segmentation ratio compared with traditional
low-level algorithm. Furthermore, when doing online seg-
mentation in our system, the word written by the user is
known and we can use this information as an additional
constraint. By doing this, a correct segmentation ratio
of about 86% can be achieved in practical use.

3 Learning strategies

Character samples are segmented from cursive handwrit-
ing samples using the methods described above and col-
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Table 1. Comparison of the recognition and segmentation
results of different methods

Recognition rate

Method Individual
character

Cursive
script

Segmentation rate

Recognition engine 56.1% 70.5% —
Low-level 93.7% 46.5% 69.1%
Two-level 95.2% 71.9% 81.3%

lected alphabetically. Samples for each character are first
aligned, and then the variation of their trajectories is an-
alyzed by applying PCA.

3.1 Data alignment

3.1.1 Trajectory matching. For training purposes, hand-
writing trajectory must be represented by a vector of
points with a fixed dimension, and these points can be
consistently located from one sample to another. In gen-
eral, extracting these points is a curve-matching prob-
lem, and many approaches have been proposed for solv-
ing it [13]. For handwriting data, the matching problem
can be simplified by exploiting the extensive studies on
handwriting trajectory models.

Experimental results in [5] show that a handwriting
trajectory can be decomposed into a sequence of static
pieces, and each static piece has a time-invariant curva-
ture. Motivated by this study, a hierarchial handwriting
alignment algorithm is proposed in which handwriting
trajectory is segmented into static pieces by landmark
points, and these pieces are matched with each other
first. Since each piece is a simple arc, points can be
equidistantly sampled from it to represent the stroke.

The landmark-point-extracting method is the same
as the one proposed in [5]. Three kinds of points are ex-
tracted: pen-down and pen-up points, local extrema of
curvature, and inflection points of curvature. The curva-
ture of each point is approximated by the change in the
angle of the tangent. In our experiments, the trajectory
of a handwriting sample can be divided into as many
as six pieces including late strokes such as t crossings
and i dots, depending on its topological structure. For
a writer with a consistent writing style, samples of the
same character are mostly composed of the same num-
ber of pieces and they match each other naturally. In
this case, a small number of abnormal samples will be
discarded. Otherwise, handwriting samples will be di-
vided into subclasses according to their decomposition
modes, and for each subclass a separate model will be
trained.

3.1.2 Training set alignment. Using the methods de-
scribed above, a handwriting sample can be represented
by a point vector

X =
{
(x1

1, x
1
2, . . . , x

1
n1

), . . . , (xs
1, . . . , x

s
ns

),

(y1
1 , y1

2 , . . . , y1
n1

), . . . , (ys
1, . . . , y

s
ns

)
}

, (4)

where s is the number of static pieces segmented from
the sample and ni is the number of points extracted from
the ith piece. The following problem is to align different
vectors into a common coordinate frame. An iterative
algorithm is proposed for this purpose that is similar
to the one proposed in [14]. For alignment, we estimate
an affine transform for each sample that transforms the
sample into the coordinate frame. A deformable energy-
based criterion is defined as:

E = − log

[
1

Ns

Ns∑
i=1

exp
(
−||Xi −X||2

2 · Vx

)]
, (5)

where Ns is the point number in the vectors, X is the
mean vector calculated as

X =
1

Ns

Ns∑
i=1

Xi , (6)

and Vx is the variance of the Gaussian calculated as

Vx =
1

Ns

Ns∑
i=1

||Xi −X||2 . (7)

The algorithm is formally described as follows:
1. Maintain an affine transform matrix Ui for each

sample, which is set to identity initially.
2. Compute the deformable energy-based criterion E.
3. Repeat until convergence:

(a) For each sample Xi,
i. For each one of the six unit affine

matrixes [14] Aj , j = 1, . . . , 6,
A. Let Unew

i = Aj · Ui.
B. Apply Unew

i to the sample and
recalculate the criterion E.

C. If E has been reduced, accept
Unew

i , otherwise:
D. Let Unew

i = A−1
j · Ui and apply

again. If E has been
reduced, accept Unew

i , otherwise
revert to Ui.
4. End.

The algorithm is essentially a hill-climbing method,
and we use simple unit step in optimization, which is not
optimal but gives satisfying results in our system. Refer
to [15] for more efficient methods.

3.2 Shape models

Aligned vectors form a distribution in the Ns-
dimensional space. By modeling this distribution, new
examples can be generated that are similar to those in
the training set. Like the Active Shape Model [10], prin-
cipal component analysis is applied to the data. For-
mally, the covariance of the data is calculated as

S =
1

s− 1

s∑
i=1

(Xi −X)(Xi −X)T . (8)
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(a) (b) (c) (d)

Fig. 3. a Synthesized letters from models. b Connecting
letters directly. There are some discontinuities that cannot
appear in a natural handwriting trajectory. c Connecting
adjacent letters smoothly by deforming their head and tail
parts. Although the connection is smooth, shapes of some
letters are no longer consistent with models. d Connecting
letters using the proposed conditional sampling method. The
connection is smooth, and the shapes of letters are consistent
with models

Then the eigenvectors φi and corresponding eigenval-
ues λi of S are computed and sorted so that λi ≥ λi+1.
The training set is approximated by

X ≈ X + Φb , (9)

where Φ = (φ1|φ2| . . . |φt) represents the t eigenvectors
corresponding to the largest eigenvalues and b is a vt-
dimensional vector given by

b = ΦT (X −X) . (10)

By varying the elements in b, new handwriting tra-
jectory can be generated from this model. Furthermore,
by applying limits of ±3

√
λi to the elements bi, we can

ensure that the generated trajectory will be similar to
those in the training set.

For late strokes such as t crossings and i dots, instead
of training their models separately, we assume that they
are virtually connected with the previous strokes of the
same letters and train the models for the pairs of strokes
together by combining their aligned vectors in sequence.

4 Synthesis strategies

To synthesize a word with learned models, we first gen-
erate each individual letter in the word. Then the base-
lines of these letters are aligned and juxtaposed in a se-
quence. The following step is to concatenate letters with
their neighbors to form a cursive handwriting. However,
this objective cannot be easily achieved. As shown in
Fig. 3a, directly connecting adjacent letters will produce
some discontinuities in the handwriting trajectory. By
deforming the head part and tail part of the trajectory
of each character, we can obtain a smoother connection,
as shown in Fig. 3b. However, we cannot ensure that the
deformed letters will still be similar to those in the train-
ing set. To solve this problem, a delta log-normal model
based conditional sampling algorithm is proposed that
can not only produce smooth connections between char-
acters but also ensure that the deformed characters will
be consistent with the models, which will be shown in
Fig. 5 and Fig. 7. The term conditional sampling comes
from the fact that in the algorithm, each letter is gener-
ated from models under the effects and constraints of its
neighbors.

(a) (b)

(c) (d)

Fig. 4. a Samples of letter “d” segmented from training data
of a user. b Synthesized “d” from trained models. c Samples
of “s” segmented from training data. d Synthesized “s” from
trained models

(a) (b)

(c) (d)

Fig. 5. a Initially sampled letters of the word “pendant.” b
Intermediate result after the first iteration of the conditional
sampling algorithm. c Intermediate result after the second
iteration of the conditional sampling algorithm. d Final result
of the conditional sampling algorithm

Fig. 6. Concatenation energy between pairs of letters in
Fig. 5 in the iterative process of the conditional sampling
algorithm
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(a) (b) (c) (d)

Fig. 7. a Initially sampled letters of the word “axe.” b In-
termediate result after the first iteration of the conditional
sampling algorithm. c Intermediate result after the second
iteration of the conditional sampling algorithm. d Final re-
sult of the conditional sampling algorithm

4.1 Delta log-normal model

The delta log-normal model is a powerful tool in an-
alyzing rapid human movements. It describes a neuro-
muscular synergy in terms of the agonist and antagonist
systems involved in the production of these movements
[5]. (See [4,16] for details of this model.) With respect
to handwriting generation, the movement of a simple
stroke is controlled by velocity [17]. The magnitude of
the velocity is described as

vξ(t) = D1Λ(t; t0, µ1, σ
2
1)−D2Λ(t; t0, µ2, σ

2
2) , (11)

where

Λ(t; t0, µ, σ2) =
1

σ
√

2π(t− t0)

× exp
{
− [ln(t− t0)− µ]2

2σ2

}
t0 ≤ t (12)

is a log-normal function, where t0 represents the activa-
tion time, Di the amplitude of impulse commands, µi

the mean time delay, and σi the response time of the
agonist and antagonist systems, respectively, on a loga-
rithmic scale axis.

The angular velocity can be expressed as

θ(t) = θ0 +
∫ t

t0

c0vξ(u)du , (13)

where θ0 is the initial direction and c0 is a constant. The
angular velocity is calculated as the derivative of θ(t):

vθ(t) = c0vξ(t) . (14)

Given vξ(t), the curvature along a stroke piece is calcu-
lated as

c(t) = lim
�s→0

� α

� s
= lim

�t→0

vθ(t)· � t

vξ(t)· � t
= c0 . (15)

This means that the curvature along a stroke piece is
time invariant. Thus, the static shape of the piece is an
arc, characterized by:

S =< θ, c, D > , (16)

where θ = θ0 is the initial angular direction, c = c0 is the
constant curvature, and D = D1 −D2 is the arc length.

4.2 Conditional sampling

First, the trajectories of synthesized handwriting letters
are decomposed into static pieces, using the method de-
scribed in previous sections. The first piece of a tra-
jectory is called the head piece, and the last piece is
called the tail piece, denoted as Sh =< θh, ch, Dh > and
St =< θt, ct, Dt >, respectively. In the concatenation
process, the trajectories of letters will be deformed to
produce a natural cursive handwriting, by changing the
parameters of the head and the tail pieces from Sh and
St to S∗

h and S∗
t , respectively. Some energy is defined to

guide the deformation process. A deformation energy of
a stroke is defined as
E

h/t
d = (θ∗

h/t − θh/t)2 + (c∗
h/t − ch/t)2

+(D∗
h/t −Dh/t)2. (17)

A concatenation energy between the ith letter and the
(i + 1)th letter is defined as

Ec(i, i + 1) = λ1
[
Et

d(i) + Eh
d (i + 1)

]
+λ2[(c∗

t (i) + θ∗
t (i) ·D∗

t (i)− c∗
h(i + 1))2]

+λ3[||pt(i)− ph(i + 1)||2] , (18)
where pt(i) is the end point of the tail piece of the ith
letter and ph(i + 1) is the start point of the head piece
of the next letter. There are three items in the defined
concatenation energy. The first item constrains the de-
formation to be smooth and gradual. The second item
encourages the angular direction at the end point of the
previous letter to be the same as that of the start point
of the next letter. The third item diminishes the inter-
val between the two letters. By minimizing the second
and the third items, the two letters are forced to connect
with each other smoothly and naturally.

The concatenation energy of a whole word is calcu-
lated as

Ec =
Nl−1∑
i=2

Ec(i, i + 1) , (19)

where Nl is the number of letters in this word.
Minimizing the concatenation energy can produce a

smooth and natural cursive trajectory. However, as ad-
dressed above, we must ensure that the deformed let-
ters are consistent with models. A sampling energy is
defined to achieve this objective. For a deformed tra-
jectory, a corresponding vt-dimensional vector b∗ can be
calculated from the model using Eq. 10. The sampling
energy is calculated as

Es =
vt∑

i=1

f
(
b∗
i /

(
3
√

λi

))
, (20)

where the function f is defined as

f(x) =
{

0 : |x| <= 1
x2 : |x| > 1 . (21)

The whole energy formulation is finally given as

E = λc · Ec + λs ·
Nl∑
i=1

Es(i) . (22)
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To minimize the energy, an iterative approach is pro-
posed and is formally described as follows:
1. Randomly generate a vector b(i) for each letter ini-

tially, where |bj(i)| < 3
√

λj .
2. Generate trajectories Si of letters according to their

corresponding vectors b(i) and calculate an affine
transform Ti for each letter, which transforms it to
its desired position.

3. For each pair of adjacent letters {Si, Si+1}, deform
the pieces in these letters to minimize the concatena-
tion energy Ec(i, i + 1).

4. Project the deformed shape into the model coordi-
nate frame: Xi = T−1Si.

5. Update the model parameters to match Xi: b(i) =
Φ(i)T (X(i)−X(i)).

6. Apply constraints on b(i) by making |bj(i)| <=
3
√

λj .
7. If not converged, return to step 2.
In step 3, the concatenation energy is to be minimized.
Formally, a vector of parameter P (i, i + 1) is to be cal-
culated as
P ∗(i, i + 1) = < θ∗

t (i), c∗
t (i), D

∗
t (i),

θ∗
h(i + 1), c∗

h(i + 1), D∗
h(i + 1) >

= arg min
P (i,i+1)

Ec(i, i + 1) . (23)

This is a multidimensional nonlinear optimization
problem, and there exist many methods to solve it. In
this study, we use the Direction Set (Powell’s) method
[18] to minimize the energy. After the iterative process
is finished, we make a check on the concatenation en-
ergy between each pair of adjacent letters. A predefined
threshold ET

c is used to determine whether to connect
these letters. If Ec(i, i + 1) < ET

c , the two letters are
connected and a local smooth operation is applied at
the connecting point. Otherwise, the two letters are left
unconnected.

5 Experimental results

The whole system is built on a PC, and handwriting
trajectory is collected from a graphical tablet (Wacom
Sapphire) connected to it. The system is evaluated on
samples written by 15 persons, and models are trained to
capture the characteristics of each user’s personal writing
style.

Figure 4 shows some letters segmented from the
training data and some randomly generated letters from
trained models. It shows that the synthesized letters have
shapes similar to those in the training data.

Figure 5 shows some intermediate results of the con-
ditional sampling algorithm in synthesizing the word
“pendant.” In the experiments, we set λ1 = 25, λ2 = 50,
and λ3 = 1 in Eq. 18. The concatenation energy of each
pair of adjacent letters is plotted in Fig. 6. It shows that
the concatenation energy drops rapidly in the iterative
process and will typically be stable after five or six iter-
ations. Figure 7 shows intermediate results of the condi-
tional sampling in synthesizing the word “axe,” and the

Fig. 8. Concatenation energy between pairs of letters in
Fig. 7 in the iterative process of the conditional sampling
algorithm

(a)

(b)

Fig. 9. a Writing samples of a user. b The same words
synthesized from models of this user

concatenation energy of pairs of letters are plotted in
Fig. 8. Since the concatenation energy between the let-
ters x and e cannot be minimized, these two letters are
not able to be connected. This result is consistent with
the writing samples of the user, in which the letter x is
never connected with the following letters. These results
clearly suggest that the proposed conditional sampling
algorithm can give satisfying results on concatenating
individual letters to cursive handwriting under the con-
straint of models.

Figure 9a shows some samples written by a user,
and Fig. 9b shows the same words synthesized from
this user’s models. Visual examination suggests that, al-
though trajectories in the two notes are different, their
writing styles are consistent. Figure 10 shows the results
of another writing style.
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(a)

(b)

Fig. 10. a Writing samples of another user. b The same
words synthesized from models of this user

6 Discussion and conclusion

Handwriting synthesis has many important applications
to facilitate users work and personalize communication
on pen-based devices. This study addresses the prob-
lem of learning personal writing styles from limited sam-
ples and producing novel scripts of the same styles. Cur-
sive handwriting samples are first segmented into indi-
vidual characters by a two-level writer-independent seg-
mentation algorithm. Samples of the same character are
aligned into a common coordinate frame and learned by
shape models that have the ability to generate shapes
similar to those in the training set. To synthesize cur-
sive script, individual letters are generated from models
and concatenated by a conditional sampling algorithm.
Some experimental results are shown to demonstrate the
effectiveness of the proposed algorithms.

Although the proposed method is superior to the di-
rect sampling method [7], its performance is still lim-
ited by samples used for training since the shape models
can only generate novel shapes within the variation of
training samples. To produce more variant and natural
handwriting, users are required to give more handwrit-
ing samples, and sometimes this is not practical. A better
way to solve this problem might be to build models of
different writing styles on a large data set and match
each user’s writing style to an existing model and make
some modification on the model, according to the small
number of input samples.

Another problem that needs to be addressed is that,
although some experimental results are shown, it is still
not known how to make an objective evaluation on the
synthesized scripts and compare different synthesis ap-
proaches. Extensive studies exist on the individuality of
handwriting [19], and some rules proposed in those stud-
ies may be helpful in achieving such a goal.
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